Abstract

In their theoretical and experimental reflections on the capacities and behaviours of living systems, neuroscientists often formulate generalizations about the behaviour of neural circuits. These generalizations are highly idealized, as they omit reference to the myriads of conditions that could perturb the behaviour of the modelled system in real-world settings. This article analyses an experimental investigation of the behaviour of place cells in the rat hippocampus, in which highly idealized generalizations were tested by comparing predictions flowing from them with real-world experimental results. The aim of the article is to identify (1) under what conditions even single prediction failures regarding the behaviour of single cells sufficed to reject highly idealized generalizations, and (2) under what conditions prima facie counter-examples were deemed to be irrelevant to the testing of highly idealized generalizations. The results of this analysis may contribute to understanding how idealized models are tested experimentally in neuroscience and used to make reliable predictions concerning living systems in real-world settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.