Abstract

In order to coordinate the scheduling problem between an isolated microgrid (IMG) and electric vehicle battery swapping stations (BSSs) in multi-stakeholder scenarios, a new bi-level optimal scheduling model is proposed for promoting the participation of BSSs in regulating the IMG economic operation. In this model, the upper-level sub-problem is formulated to minimize the IMG net costs, while the lower-level aims to maximize the profits of the BSS under real-time pricing environments determined by demand responses in the upper-level decision. To solve the model, a hybrid algorithm, called JAYA-BBA, is put forward by combining a real/integer-coded JAYA algorithm and the branch and bound algorithm (BBA), in which the JAYA and BBA are respectively employed to address the upper- and lower- level sub-problems, and the bi-level model is eventually solved through alternate iterations between the two levels. The simulation results on a microgrid test system verify the effectiveness and superiority of the presented approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.