Abstract

Electric vehicle (EV) battery swapping stations (BSWS) are an important aid in rapid transport electrification, especially in developing countries where per capita income is low and expensive battery prices discourage EV penetration. Consequently, a BSWS model, where the BSWS owns the battery, can help in EV penetration and rapid transport electrification. This paper presents a new EV BSWS model to obtain a suitable trade-off between swapping time and the quality of battery health indicators. The state of charge (SOC), battery abuse, and battery degradation are measured/estimated online, while the state of health (SOH) is determined offline. The cost of the swapping cycle is determined by considering multiple cost components and penalties. The modeling approach not only enables determining a fair and affordable price for each swapping cycle for EVs but also helps to keep a check on the battery’s SOH and remaining useful life (RUL) during swapping without significantly increasing the battery swapping times compared to the average refueling time of internal combustion engine (ICE) vehicles. The swapping cost of the BSWS model is also compared with home and commercial charging station (HCS & CCS) models under different assumptions. The analysis suggests that the battery can be swapped in 6 minutes for light vehicles, comparable to the complete tank refueling of ICE vehicles. Moreover, with appropriate consideration of electric vehicle opportunity profit (EVOP), the BSWS remains feasible compared to HCS and CCS even at a high-profit margin of 750%. Also, battery degradation is considered using the economic model’s degradation cost component, and its link with different SOC strategies is explored. Again, results suggest that SOC strategies can be a helpful way for BSWS to maximize battery life and increase its profits. Moreover, considering EVOP along with battery degradation and SOC strategies further highlights the feasibility of BSWS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.