Abstract

Scaling of proposals for Metropolis algorithms is an important practical problem in Markov chain Monte Carlo implementation. Analyses of the random walk Metropolis for high-dimensional targets with specific functional forms have shown that in many cases the optimal scaling is achieved when the acceptance rate is approximately 0.234, but that there are exceptions. We present a general set of sufficient conditions which are invariant to orthonormal transformation of the coordinate axes and which ensure that the limiting optimal acceptance rate is 0.234. The criteria are shown to hold for the joint distribution of successive elements of a stationary pth-order multivariate Markov process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.