Abstract
The stationary Markov process is considered and its circular autocorrelation function is investigated. More specifically, the transition density of the stationary Markov circular process is defined by two circular distributions, and we elucidate the structure of the circular autocorrelation when one of these distributions is uniform and the other is arbitrary. The asymptotic properties of the natural estimator of the circular autocorrelation function are derived. Furthermore, we consider the bivariate process of trigonometric functions and provide the explicit form of its spectral density matrix. The validity of the model was assessed by applying it to a series of wind direction data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.