Abstract
Abstract In this paper we consider the optimal scaling of high-dimensional random walk Metropolis algorithms for densities differentiable in the Lp mean but which may be irregular at some points (such as the Laplace density, for example) and/or supported on an interval. Our main result is the weak convergence of the Markov chain (appropriately rescaled in time and space) to a Langevin diffusion process as the dimension d goes to ∞. As the log-density might be nondifferentiable, the limiting diffusion could be singular. The scaling limit is established under assumptions which are much weaker than the one used in the original derivation of Roberts et al. (1997). This result has important practical implications for the use of random walk Metropolis algorithms in Bayesian frameworks based on sparsity inducing priors.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have