Abstract
An important feature of distance-based principal components analysis, is that the variables can be optimally transformed. For monotone spline transformation, a nonnegative least-squares problem with a length constraint has to be solved in each iteration. As an alternative algorithm to Lawson and Hanson (1974), we propose the Alternating Length-Constrained Non-Negative Least-Squares (ALC-NNLS) algorithm, which minimizes the nonnegative least-squares loss function over the parameters under a length constraint, by alternatingly minimizing over one parameter while keeping the others fixed. Several properties of the new algorithm are discussed. A Monte Carlo study is presented which shows that for most cases in distance-based principal components analysis, ALC-NNLS performs as good as the method of Lawson and Hanson or sometimes even better in terms of the quality of the solution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have