Abstract
In the present article, we are presenting row-column designs for Griffing’s complete diallel cross methods (1) for p parents by using a complete set of (p-1) mutually orthogonal Latin squares, when p is prime or a power of prime. The row-column designs for Griffing’s methods (1) are new and universally optimal in the sense of Kempthrone (1956) and Kiefer (1975). The row-column designs for methods (1) are orthogonally blocked designs. In an orthogonally blocked design no loss of efficiency on the comparisons of interest is incurred due to blocking. The analysis includes the analysis of variance (ANOVA), estimation of general combining ability (gca), specific combining ability (sca) and reciprocal combining ability (rca). Tables of universally optimal row-column designs have been provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.