Abstract
We study the problem of routing for energy-aware battery-powered vehicles (BPVs) in networks with charging nodes. The objective is to minimize the total elapsed time, including travel and recharging time at charging stations, so that the vehicle reaches its destination without running out of energy. Relaxing the homogeneity of charging stations, and here, we investigate the routing problem for BPVs through a network of “inhomogeneous” charging nodes. We study two versions of the problem: the single-vehicle (user-centric) routing problem and the multiple-vehicle (system-centric) routing problem. For the former, we formulate a mixed-integer nonlinear programming (NLP)problem for obtaining an optimal path and charging policy simultaneously. We then reduce its computational complexity by decomposing it into two linear programming problems. For the latter, we use a similar approach by grouping vehicles into “subflows” and formulating the problem at a subflow-level with the inclusion of traffic congestion effects. We also propose an alternative NLP formulation obtaining near-optimal solutions with orders of magnitude reduction in the computation time. We have applied our optimal routing approach to a subnetwork of the eastern Massachusetts transportation network using actual traffic data provided by the Boston Region Metropolitan Planning Organization. Using these data, we estimate cost (congestion) functions and investigate the optimal solutions obtained under different charging station and energy-aware vehicle loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.