Abstract

Injection molding is a critical component of modern industrial operations, and achieving fast and stable control of injection molding machines (IMMs) is essential for producing high-quality plastic products. This paper focuses on solving an optimal tracking control problem of the injection velocity that arises in a typical nonlinear IMM. To this end, an efficient optimal robust controller is proposed and designed. The nonlinear injection velocity servo system is first approximately linearized at iteration points using the first-order Taylor expansion approach. Then, at each time node in the optimization process, the relevant algebraic Riccati equation is introduced, and the solution is used to construct an optimal robust feedback controller. Furthermore, a rigorous Lyapunov theorem analysis is employed to demonstrate the global stability properties of the proposed feedback controller. The results from numerical simulations show that the proposed optimal robust control strategy can successfully and rapidly achieve the best tracking of the intended injection velocity trajectory within a given time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.