Abstract
In this paper, we propose new robust optimal control strategies for spacecraft position and attitude tracking maneuvers in the presence of external disturbances. First, two optimal position and attitude controllers are developed to achieve asymptotic convergence to the desired position and attitude. The first optimal control law is designed based on the inverse optimal control concept using Sontag-type formula and a control Lyapunov function. For the second control law, the optimal Lyapunov approach is used to design an optimal position and attitude controller. Then robust optimal position and attitude controllers are designed by using an integral sliding mode control method to combine a second order sliding mode controller with the derived inverse optimal controller or optimal Lyapunov controller. Both developed robust optimal controllers can minimize a performance index and ensure the stability of the closed-loop system and attenuation of external disturbance. An example of position and attitude tracking maneuvers is presented and simulation results are included to show the performance of the proposed controllers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.