Abstract

AbstractThis paper proposes an optimal robust sizing model for distributed energy storage systems (DESSs) considering power quality management. The power conversion systems (PCSs) of DESSs with four‐quadrant operation characteristics can provide power quality management services to customers. To improve capacity utilization of the DESS, power quality management services are quantified and integrated into an optimal bi‐level sizing model, where the upper level addresses the sizing problem concerning battery and PCS capacities, while the lower level focuses on coordinating active/reactive power control of the DESS. A robust optimization approach for DESS scheduling is adopted to consider uncertainties of distributed photovoltaic (PV) power generation and power quality management requirements. The column and constraint generation (C&CG) algorithm is applied for efficient handling of this model. Ultimately, the effectiveness of the proposed approach is validated through comprehensive comparative analysis of four cases, resulting in a 12.44% increase in the net present value (NPV) over the entire lifecycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.