Abstract

AbstractThe reliability modeling and optimization of performance sharing systems (PSSs) are of vital importance due to their wide applications. Existing research mainly focuses on evaluating and maximizing the reliability of PSSs. However, in many practical systems, decision‐makers tend to prioritize the average cost of the system over its reliability. This paper studies the resource allocation optimization in common bus PSSs. In such systems, each unit has binary‐state random performance to satisfy the multi‐state random demand. The surplus performance can be shared via a common bus with transmission loss between the common bus and the unit. The performance allocation, performance transmission, and unsupplied demand incur costs. Resource allocation strategies are determined by optimization models considering different objective functions and constraints. Additionally, transmission loss between the common bus and the unit is considered. A genetic algorithm is employed to efficiently find the optimal allocation strategies. Numerical examples prove the effectiveness of the proposed models in improving system reliability and reducing system costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.