Abstract

In this article we consider the representation of a finite-energy non-stationary random field with a finite number of samples. We pose the problem as an optimal sampling problem where we seek the optimal sampling interval under the mean-square error criterion, for a given number of samples. We investigate the optimum sampling rates and the resulting trade-offs between the number of samples and the representation error. In our numerical experiments, we consider a parametric non-stationary field model, the Gaussian–Schell model, and present sampling schemes for varying noise levels and for sources with varying numbers of degrees of freedom. We discuss the dependence of the optimum sampling interval on the problem parameters. We also study the sensitivity of the error to the chosen sampling interval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.