Abstract
In the evolution of fifth generation (5G) and beyond wireless communication systems, non-coherent (NC) short packet communication (SPC) is crucial for achieving ultra-reliable low-latency communication (URLLC). Frame design, latency, and reliability are some of the challenges associated with short-packet communication. Recently, to address these challenges, a novel modulation scheme known as modulation on conjugate-reciprocal zeros (MOCZ) has been proposed. MOCZ modulates information on conjugate reciprocal zeros in the z-domain, thereby eliminating the need for channel estimation and providing a robust solution for NC communication. However, in multi-user MOCZ (MU-MOCZ) scheme, adding guard intervals to each short packet to mitigate channel impact remains an issue, as it increases the transmission time and consequently reduces efficiency. To address the aforementioned problem, this paper introduces a novel frame design approach called z-domain user multiplexing MOCZ (ZDUM-MOCZ or ZDM-MOCZ). Unlike traditional time division multiplexing (TDM), which serves users consecutively in the time domain, this method multiplexes users in the z-domain. In this approach, each user is allocated a specific set of zeros in the z-domain, which collectively form a unique sequence in the time domain. The findings illustrate the potential for reduced latency in downlink transmission, highlighting the benefits of this novel methodology over conventional MU-MOCZ method. The proposed ZDUM-MOCZ scheme not only addresses the existing issues in the frame design of the MU-MOCZ scheme but also facilitates more efficient and reliable short packet communication in 5G and beyond wireless systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.