Abstract

Simple SummaryOnly limited information is available on the use of stick water in aquafeed, even though this could confer benefits by providing cost-effective nutrition to aquaculture as well as reducing waste effluents. Therefore, the optimal replacement of protein from fish meal by stick water in the diet of Nile tilapia was investigated in the current study. An 8 month trial was conducted in floating baskets, mimicking the market stage Nile tilapia production in Thailand. Based on the overall results, 20% protein replacement of fish meal by stick water was near optimal, providing superior traits of overall observed parameters relative to the baseline fish meal-based diet. Findings from the current study suggest that stick water is a suitable alternative ingredient for sex-reversed Nile tilapia. The pursuit of higher replacement levels while maintaining the carcass quality of reared fish could be a topic for further study.The effects of replacing fish meal (FM) protein with stick water (SW) were investigated during the market stage of sex-reversed Nile tilapia, Oreochromis niloticus (18.49 ± 0.31 g initial body weight). The FM protein was replaced with SW for 10% (10SW), 20% (20SW), 30% (30SW) and 50% (50SW) of the FM. The completely randomized design was conducted in outdoor 15 floating baskets (1.5 × 1.5 × 2 m), comprising three replications with 50 fish each, over an 8 month trial. At the end of the experiment, no differences in survival, growth performance or feed utilization were observed across the dietary treatments (p > 0.05). A significant change in lipase-specific activity was caused by the replacement, without changes to trypsin, chymotrypsin or amylase activities. The fish in all dietary groups exhibited normal liver histopathology, but the fish fed a diet containing SW showed higher numbers of cells accumulating lipids as compared to fish fed the baseline 0SW dietary treatment. Hematological parameters were similar across the five dietary groups. Only fish fed the 20SW diet had superior carcass quality compared to the baseline 0SW group, in terms of crude protein and lipids, but lower or higher replacement levels had negative effects on carcass quality. Findings from the current study support the replacement of FM protein with SW at a level of 20% in the diet of sex-reversed Nile tilapia reared to the market stage. Higher replacement levels might be possible with the supplementation of fatty acids.

Highlights

  • Nile tilapia (Oreochromis niloticus) is among the most important fish species in economies around the world

  • The performances in terms of final body weight (BW), total length, CF, SSI, ISI, SGR, feed intake (FI), feed conversion ratio (FCR) and protein efficiency ratio (PER) were similar across all treatments

  • The findings from lipase-specific activity and the composition of carcass lipids in the current study indicate unbalanced lipid composition profiles, especially in terms of the fatty acids, due to the protein replacement of Fish meal (FM) by stick water (SW)

Read more

Summary

Introduction

Nile tilapia (Oreochromis niloticus) is among the most important fish species in economies around the world. The production of tilapia (all species) increased from 2.5 million tonnes in 2010 to 4.2 million tonnes in 2016 [1]. Fish meal (FM) is the most important protein source in aquafeed production. The replacement of protein from the costly FM with other alternative sources has been optimized in order to reduce the cost of feed production. Such replacements at suboptimal levels may cause unbalanced amino acids, resulting in low feed utilization efficiency and poor growth [2,3,4,5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.