Abstract

PurposeThe purpose of this paper is the investigation of the main aspects of optimal reliability allocation with respect to the design of hybrid electric vehicles. In particular, with reference to the hybrid electric vehicle propulsion system, the problem of data uncertainty, due to a scarce knowledge of the components' reliabilities, is taken into account. This problem is crucial for new technology systems and it is faced with a Bayesian approach: components' reliabilities are considered as random variables, characterised in the paper by negative log‐gamma distributions.Design/methodology/approachThe main aspects of optimal reliability allocation with the design of hybrid electric vehicles are presented, pointing out the opportunity of a reliability evaluation in the planning stage.FindingsThe topic of a series hybrid vehicle reliability is addressed, nevertheless results can be easily extended to the parallel configuration. In particular, the opportunity of a reliability evaluation of the propulsion system in the design stage is highlighted, mainly when new technology components are involved.Originality/valueThe value of the paper consists in the methodology allowing to express the system reliability uncertainty as a function of component uncertain data. Then, as far as concern the practical implications, the optimal allocation of the components' reliabilities can be efficiently performed, in order to minimise the system total cost respecting a prefixed value of the system reliability. In the final part of the paper, a numerical application, related to a series hybrid electric vehicle propulsion system, is presented to show the feasibility of the approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call