Abstract

SUMMARYRecently, the issue of large inelastic seismic force demands at severe ground shakings such as maximum considered earthquake level has been highlighted in the conventionally designed high‐rise reinforced concrete core wall buildings. Uncoupled modal response history analysis was used in this study to identify the modes responsible for the large inelastic seismic force demands. The identification of dominant modes and mean elastic design spectra of seven representative ground motions for different damping ratios has led to the identification of three control measures: plastic hinges (PHs), buckling‐restrained braces (BRBs) and fluid viscous dampers (FVDs). The identified control measures were designed to suppress the dominant modes responsible for the large inelastic seismic force demands. A case‐study building was examined in detail. Comparison of the modal as well as the total responses of the case‐study building with and without the control measures shows that all the control measures were effective and able to reduce the inelastic seismic demands. A reduction of 33%, 22% and 27% in the inelastic shear demand at the base and a reduction of 60%, 22% and 26% in the inelastic moment demand at mid‐height were achieved using the PHs, BRBs and FVDs, respectively. Furthermore, a reduction of about 30–40% in the inelastic seismic deformation demands was achieved for the case of the BRBs and FVDs. The study enables us to gain insight to the complex inelastic behavior of high‐rise wall buildings with and without the control measures. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call