Abstract
ABSTRACTThe present study aims to identify damage in structures using seismic responses and a two‐stage method based on mixture of Gaussian (MOG) and Harris hawks optimization (HHO). Two‐dimensional (2‐D) frame structures under seismic loads are simulated using the finite element method (FEM). The placement of sensors is optimized using a combination of an iterated improved reduced system (IIRS) and the binary differential evolution (BDE) algorithm. The MOG classifier is trained to find the damaged story and damaged element type (i.e., whether it is a beam or a column) using the nodal acceleration responses at the optimal sensor placement of the seismically loaded structure. Thus, as the first step, the possibly damaged elements are located through the classifier. Then, in the second step, the damage is accurately located and quantified by HHO algorithm. The performance of the proposed method is assessed using the numerical results of 2‐D frames of 7 and 14 stories in different damage scenarios with and without considering noise. As a result, the efficiency of the proposed method for the seismic damage identification of 2‐D frames is revealed. Sensor positions are well optimized, and it causes the method to be highly effective. Moreover, MOG correctly finds a damaged story and identifies whether a damaged element is a beam or a column. Damage in the presence of noise is also localized and quantified precisely by HHO.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Structural Design of Tall and Special Buildings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.