Abstract

This paper presents novel approach for optimal distribution network reconfiguration using the combination of cycle-break algorithm and genetic algorithms. Significant improvements are introduced in the phases of initial population generation as well as other general operations inside genetic algorithm. These improvements lead to better convergence rate and computational time reduction. Even though genetic algorithms are widely used, problems related to inapplicability for real-size are often present. These problems are related to the high individual rejection rate due to violation of system constraints and distribution network radial structure requirements. Utilization of combined cycle-break algorithm and genetic algorithm solves these issues and allow real-size network application. Acknowledging this fact, algorithm described in the paper is used to find optimal distribution network topology while fulfilling system constraints and maintaining radial network requirements in all solution steps. The proposed algorithm for optimal distribution network reconfiguration is tested on several standard IEEE test cases. Optimal distribution network reconfiguration can be found under minimum network loss or optimal network loading framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.