Abstract

Optimal hierarchical coding is sought, for progressive or scalable image transmission, by minimizing the variance of the error difference between the original image and its lower resolution renditions. The optimal, according to the above criterion, pyramidal and subband image coders are determined for images subject to corruption by quantization or transmission noise. Given arbitrary analysis filters and assuming adequate knowledge of the noise statistics, optimal synthesis filters are found. The optimal analysis filters are subsequently determined, leading to formulas for globally optimal structures for pyramidal and subband image decompositions. Experimental results illustrate the implementation and performance of the optimal coders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.