Abstract

We present an economic model for the optimization of preventive maintenance in a production process with two quality states. The equipment starts its operation in the in-control state but it may shift to the out-of-control state before failure or scheduled preventive maintenance. The time of shift and the time of failure are generally distributed random variables. The two states are characterized by different failure rates and revenues. We first derive the structure of the optimal maintenance policy, which is defined by two critical values of the equipment age that determine when to perform preventive maintenance depending on the actual (observable) state of the process. We then provide properties of the optimal solution and show how to determine the optimal values of the two critical maintenance times accurately and efficiently. The proposed model and, in particular, the behavior of the optimal solution as the model parameters and the shift and failure time distributions change are illustrated through numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call