Abstract

This paper presents a novel adaptive quantum-inspired binary gravitational search algorithm (QBGSA) to solve the optimal power quality monitor (PQM) placement problem in power systems. In this algorithm, the standard binary gravitational search algorithm is modified by applying the concepts and principles of quantum behavior to improve the search capability with a fast convergence rate. QBGSA is integrated with an artificial immune system, which acts as an adaptive element to improve the flexibility of the algorithm toward economic capability while maintaining the quality of the solution and speed. The optimization involves multi-objective functions and handles the observability constraints determined by the concept of the topological monitor reach area. The objective functions are based on the number of required PQM, monitor overlapping index, and sag severity index. The proposed adaptive QBGSA is applied on several test systems, which include both transmission and distribution systems. To evaluate the effectiveness of the proposed adaptive QBGSA method, its performance is compared with that of the conventional binary gravitational search algorithm, binary particle swarm optimization, quantum-inspired binary particle swarm optimization, and genetic algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.