Abstract

In order to eliminate the internal harmonics of the magnetic latching relay caused by the load input, an ADALINE-based magnetic latching relay power quality optimal control model for charging stations was constructed. Calculate the sampling point of the input signal through the ADALINE neural network, obtain the error signal between the input signal and the measured signal, use the VSLMS algorithm to continuously adjust the weight value to update the spectrum in real time, detect the harmonics existing in the magnetic latching relay, and use the harmonics. The droop control strategy calculates the amount of harmonic voltage that needs to be compensated, and participates in the on-off control of the magnetic latching relay by calculating the modulation wave difference formed by the fundamental wave and the harmonic voltage closed loop, eliminating the harmonics generated by the nonlinear load, and realizing electric energy optimal quality control. The experimental results show that the model can accurately detect and eliminate the internal harmonics of the magnetic latching relay caused by the load input, and has a better control effect on the power quality of the magnetic latching relay used in the charging station.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call