Abstract

We consider a variant of the basic problem of the calculus of variations, where the Lagrangian is convex and subject to randomness adapted to a Brownian filtration. We solve the problem by reducing it, via a limiting argument, to an unconstrained control problem that consists in finding an absolutely continuous process minimizing the expected sum of the Lagrangian and the deviation of the terminal state from a given target position. Using the Pontryagin maximum principle, we characterize a solution of the unconstrained control problem in terms of a fully coupled forward–backward stochastic differential equation (FBSDE). We use the method of decoupling fields for proving that the FBSDE has a unique solution. We exploit a monotonicity property of the decoupling field for solving the original constrained problem and characterize its solution in terms of an FBSDE with a free backward part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.