Abstract
We consider fully coupled forward–backward stochastic differential equations (FBSDEs), where all function parameters are Lipschitz continuous, the terminal condition is monotone and the diffusion coefficient of the forward part depends monotonically on z, the control process component of the backward part. We show that there exists a class of linear transformations turning the FBSDE into an auxiliary FBSDE for which the Lipschitz constant of the forward diffusion coefficient w.r.t. z is smaller than the inverse of the Lipschitz constant of the terminal condition w.r.t. the forward component x. The latter condition allows to verify existence of a global solution by analysing the spatial derivative of the decoupling field. This is useful since by applying the inverse linear transformation to a solution of the auxiliary FBSDE we obtain a solution to the original one. We illustrate with several examples how linear transformations, combined with an analysis of the decoupling field's gradient, can be used for proving global solvability of FBSDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.