Abstract
We consider a linear stochastic heat equation on the spatial domain ]0, 1[ with additive space-time white noise, and we study approximation of the mild solution at a fixed time instance. We show that a drift-implicit Euler scheme with a non-equidistant time discretization achieves the order of convergence N -1/2, where N is the total number of evaluations of one-dimensional components of the driving Wiener process. This order is best possible and cannot be achieved with an equidistant time discretization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.