Abstract

This study investigates the planning problem of fast-charging stations for electric vehicles with the consideration of uncertain charging demands. This research aims to determine where to build fast-charging stations and how many charging piles to be installed in each fast-charging station. Based on the multicommodity flow model, a chance-constrained programming model is established to address this planning problem. A scenario-based approach as well as a big-M coefficients generation algorithm are applied to reformulate the programming model into tractable one, then the Dantzig–Wolfe decomposition method is leveraged to find its optimal solution. Finally, a numerical experiment is conducted in a 25-node network to assess the efficiency of the proposed model and solution approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call