Abstract
This paper develops the fundamentals of optimal-tuning periodic-gain fractional delayed state feedback control for a class of linear fractional-order periodic time-delayed systems. Although there exist techniques for the state feedback control of linear periodic time-delayed systems by discretization of the monodromy operator, there is no systematic method to design state feedback control for linear fractional periodic time-delayed (FPTD) systems. This paper is devoted to defining and approximating the monodromy operator for a steady-state solution of FPTD systems. It is shown that the monodromy operator cannot be achieved in a closed form for FPTD systems, and hence, the short-memory principle along with the fractional Chebyshev collocation method is used to approximate the monodromy operator. The proposed method guarantees a near-optimal solution for FPTD systems with fractional orders close to unity. The proposed technique is illustrated in examples, specifically in finding optimal linear periodic-gain fractional delayed state feedback control laws for the fractional damped Mathieu equation and a double inverted pendulum subjected to a periodic retarded follower force with fractional dampers, in which it is demonstrated that the use of time-periodic control gains in the fractional feedback control generally leads to a faster response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.