Abstract

Due to global concerns about environmental issues, renewable energy sources (RESs), such as photovoltaics (PV), Fuel Cells (FC), and wind turbines, play an outstanding role in energy production. Also, other devices are needed to achieve a smart grid. First of all, a Microgrid (MG), as a smart grid, must be equipped by the Battery Energy Storage System (BESS) due to its astonishing advantages, such as providing power when RESs are not generating power, power quality improvement, RES integration facilitation, and financial benefits. Secondly, distributed generators should be installed to reduce dependency of MG on the main grid. In this paper, a cost-based mathematical optimization is used to evaluate the optimal amount of imported power from the main grid to the LAMBDA lab MG testbed, which is placed at Sapienza University of Rome. In this regard, this study considers four scenarios based on using different source, including PV array, FC and main grid, for load satisfaction. The LAMBDA lab is considered as a power hub with three optional inputs and an electrical demand in output. In addition, this study considers PV production and load demand as indeterministic parameters and evaluates the problem under uncertainties. As a result, a robust optimization problem is defined, and a powerful optimization function is used to reach the optimal power received from main grid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call