Abstract

As the oil offloading operations of floating production storage and offloading (FPSO) units become more routine, the desire grows to increase the availability for offloading and thus decrease production downtime. Experience with these operations is the main tool available to increase the efficiency of this aspect of deepwater production. However, it is clear that a formal optimization approach can help to fine tune design parameters so that not only is availability increased but the significance of each design parameter can be better understood. The key issue is to define the environmental conditions under which the vessels involved in offloading are able to maintain position. By this, we reduce the notion of availability to a set of operating criteria, which can or cannot be met for a particular set of environmental conditions. The actual operating criteria such as relative vessel heading depend on selection of design parameters, such as the direction and magnitude of external force applied by thrusters or tugs. In the earliest offloading operations, engineering judgment was used to determine the feasibility of offloading at a particular time. For example, if wind and current were not expected to exceed a 1year return period, offloading may be considered safe. This approach can be both conservative and unconservative, depending on the nuances of the particular environmental conditions. This study will propose a formal approach to choosing the design parameters that optimize the availability of a FPSO for offloading. A simple analysis model will be employed so that optimization can be performed quickly using a robust second order method. The proposed analysis model will be compared to model test data to demonstrate its agreement with the more complex system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.