Abstract

In this paper, we consider a replacement model with minimal repair based on a cumulative repair-cost limit policy, where the information of all repair costs is used to decide whether the system is repaired or replaced. As a failure occurs, the system experiences one of the two types of failures: a type-I failure (repairable) with probability q, rectified by a minimal repair; or a type-II failure (non-repairable) with probability p (=1 − q) that calls for a replacement. Under such a policy, the system is replaced anticipatively at the nth type-I failure, or at the kth type-I failure ( k < n) at which the accumulated repair cost exceeds the pre-determined threshold, or any type-II failure, whichever occurs first. The object of this paper is to find the optimal number of minimal repairs before replacement that minimizes the long-run expected cost per unit time of this polish. Our model is a generalization of several classical models in maintenance literature, and a numerical example is presented for illustration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.