Abstract
In this article, we present optimal non-uniform finite difference grids for the Black–Scholes (BS) equation. The finite difference method is mainly used using a uniform mesh, and it takes considerable time to price several options under the BS equation. The higher the dimension is, the worse the problem becomes. In our proposed method, we obtain an optimal non-uniform grid from a uniform grid by repeatedly removing a grid point having a minimum error based on the numerical solution on the grid including that point. We perform several numerical tests with one-, two- and three-dimensional BS equations. Computational tests are conducted for both cash-or-nothing and equity-linked security (ELS) options. The optimal non-uniform grid is especially useful in the three-dimensional case because the option prices can be efficiently computed with a small number of grid points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.