Abstract

We present an accurate and efficient finite difference method for solving the Black–Scholes (BS) equation without boundary conditions. The BS equation is a backward parabolic partial differential equation for financial option pricing and hedging. When we solve the BS equation numerically, we typically need an artificial far-field boundary condition such as the Dirichlet, Neumann, linearity, or partial differential equation boundary condition. However, in this paper, we propose an explicit finite difference scheme which does not use a far-field boundary condition to solve the BS equation numerically. The main idea of the proposed method is that we reduce one or two computational grid points and only compute the updated numerical solution on that new grid points at each time step. By using this approach, we do not need a boundary condition. This procedure works because option pricing and computation of the Greeks use the values at a couple of grid points neighboring an interesting spot. To demonstrate the efficiency and accuracy of the new algorithm, we perform the numerical experiments such as pricing and computation of the Greeks of the vanilla call, cash-or-nothing, power, and powered options. The computational results show excellent agreement with analytical solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.