Abstract
PurposeQuality function deployment (QFD) has been widely applied in new product development, but existing research on QFD has some limitations. Primarily, QFD lacks the capability to provide feedback on the satisfaction degree of customer requirements (CRs) according to the actual values of engineering characteristics (ECs). In addition, QFD does not quantitatively consider the interrelationships among ECs. Reverse QFD (R-QFD) was introduced to implement the feedback process. On this basis, this paper quantitatively considers the interrelationships among ECs in the R-QFD model and extends these relationships to encompass combinations of multiple ECs, aiming to improve the inference accuracy of the model.Design/methodology/approachA nonlinear regression model was established between CRs and ECs, aiming to infer the satisfaction degree of CRs based on the implementation status of ECs. This model considers the interdependencies among ECs and extends the consideration of pairwise EC correlations from every two to every fifteen. Lingo Software is utilized to seek solutions for this program. To facilitate the implementation of the program, a directive to simplify the solution has been proposed.FindingsThe experimental results indicate that the interrelationships among ECs significantly affect the inference accuracy of the R-QFD model, thereby verifying the necessity of considering higher-order interrelationships among ECs within the R-QFD framework. Based on the results from data experiments, this paper also proposes research recommendations pertaining to ECs hierarchy for varying quantities of ECs.Originality/valueThe outcomes of this study have further refined the R-QFD model, addressing its limitations of ignoring the interrelationships among ECs. This transformation elevates the R-QFD model from a relatively simple linear model to a nonlinear model formed through modeling, thereby enhancing its accuracy and applicability. In practical terms, this study provides case support for the application of the R-QFD model in manufacturing industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Quality & Reliability Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.