Abstract

This paper proposes an adaptive weight particle swarm optimization (APSO) for solving optimal distributed generation (DG) placement. APSO has ability to control velocity of particles. The objective is to minimize the real power loss within acceptable voltage limits. Four types of DG are considered including DG supplying real power only, DG supplying reactive power only, DG supplying real power and consume reactive power, DG supplying real power and reactive power, representing photovoltaic, synchronous condenser, wind turbines, and hydro power, respectively. The test systems include 33-bus and 69-bus radial distribution systems. With a given number of DGs in each type, APSO could find the optimal sizes and locations of multi-DG which result in less total power system loss than basic particle swarm optimization (BPSO) and repetitive load flow. Moreover, if the number of DG increases from one to three, the total power loss will decrease for all types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.