Abstract

Particle Swarm optimization (PSO) is a powerful optimization tool which is widely used to solve a wide range of real-life optimization problems. Some of the widely used PSO variants, including CF-PSO and AW-PSO, cannot guarantee to achieve globally optimal solutions during the period of stagnation when particle velocity variations decline considerably, leading to early convergence. In order to address this problem, this paper proposes an improved PSO algorithm, ‘Collaborative Hybrid PSO (CHPSO)’. In the proposed algorithm, the initial swarm is divided into two sub-swarms, one following the Constriction Factor approach and other following Adaptive Weight approach. When the velocity of any of these two sub-swarms goes below the threshold, an information exchange mechanism is utilized and mutation is performed to improve the quality of the solutions. The proposed method is implemented on Matlab and evaluated using five well studied benchmark test functions. Results obtained in this analysis show that the proposed method finds better solutions compared with Constriction Factor PSO (CF-PSO) and Adaptive Weight PSO (AW-PSO), when they work individually. Statistical significance test also shows the robustness of the proposed method compared with CF-PSO and AW-PSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.