Abstract
This paper presents a study on using adaptive inertia weight (AIW) in particle swarm optimization (PSO) for solving optimization problems. An AIW function based on the hyperbolic tangent function was proposed, with the function parameters adaptively tuned based on the particle best and global best values. The performance of the proposed AIW-PSO was compared with standard PSO and other PSO variations using seven benchmark functions. The results showed that the proposed AIW-PSO outperformed the other variations in terms of minimum cost and mean cost while reducing the standard deviation of cost. The performance of the different PSO variations was also analysed by plotting the best cost against iteration, with the proposed AIW-PSO showing a faster convergence rate. Overall, the study demonstrates the effectiveness of using an adaptive inertia weight function in PSO for optimizing problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.