Abstract

Diesel generator is a reliable source of electricity, but requires quite high operational costs, especially for fuel. This paper describes a technique for reducing fuel consumption in Diesel Engine Synchronous Generator systems. The system is originally a Constant Speed Diesel Synchronous Generator (CSD-SG), but during certain conditions, the speed is reduced to minimize fuel consumption by adjusting the Specific Fuel Consumption (SFC) map. SFC is defined as the amount of fuel consumed by a diesel engine generator for each unit of power output. It shows various numbers depending on the speed and operating power. In this paper, we use the Adaptive Inertia Weight Particle Swarm Optimization (AIWPSO) algorithm to select of the proper SFC curve at a certain speed and operating power. AIWPSO employs an adaptive inertial weight adjustment method, which enables this algorithm to achieve faster convergence than conventional Particle Swarm Optimisation (PSO) algorithms. The system is embedded with AC/DC/AC power electronics converter to regulate the frequency. Data set of 1000 kVA Cummins diesel engine generator from the oil and gas company in Central Java, Indonesia was taken for simulations. The results show that the AIWPSO algorithm calculates the fuel consumption as 1,678 liters per day on a typical condition, whereas the previous method, the linear line needs 1,693 liters per day. Therefore, using AIWPSO method can save up to 450 liters of fuel per month. The simulation results show that the proposed method can improve fuel efficiency compared to the previous model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call