Abstract

This paper explores the potential for applying newly available numerical methods in optimal control to solve motion planning problems created by the search for targets with motion uncertainty characterized by constant but unknown parameters. These recent developments enable the efficient computation of numerical solutions for search problems with multiple searchers, nonlinear dynamics, and a broad class of objectives. We demonstrate the efficacy of these methods through implementing a multi-agent optimal search problem. We then derive an expansion of the optimal search modeling framework which facilitates the consideration of multi-agent searching problems with more general strategic objectives and utilize this expanded framework to implement an example combat defense scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.