Abstract

This study introduces an optimal mechanism in a dynamic stochastic knapsack environment. The model features a single seller who has a fixed quantity of a perfectly divisible item. Impatient buyers with a piece-wise linear utility function arrive randomly and they report the two-dimensional private information: marginal value and demanded quantity. We derive a revenue-maximizing dynamic mechanism in a finite discrete time framework that satisfies incentive compatibility, individual rationality, and feasibility conditions. This is achieved by characterizing buyers' utility and utilizing the Bellman equation. Moreover, we establish the essential penalty scheme for incentive compatibility, as well as the allocation and payment policies. Lastly, we propose algorithms to approximate the optimal policy, based on the Monte Carlo simulation-based regression method and reinforcement learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.