Abstract

This paper presents a probability-based approach for optimising the management of bridge networks. Most of the Bridge Management Systems are focused on condition features to ensure a minimum safety level for each individual bridge. Their location on the road network, the consequences of inadequate service due to maintenance actions are therefore not taken into consideration. These multiple criteria should be considered when scheduling maintenance activities. To overcome these limitations, a probabilistic supply and demand strategy is proposed for determining the optimal maintenance planning for each interconnected bridge. The problem is solved with genetic algorithms. One objective function is first introduced, corresponding to the summation of all the maintenance, failure, and user costs. Then, two conflicting objective functions are considered, the total user costs and the maintenance and rehabilitation costs. Safety and serviceability aspects are taken into account in the methodology and the theoretical and numerical developments are applied on a part of the French national network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.