Abstract

AbstractWe consider the integrated problem of optimally maintaining an imperfect, deteriorating sensor and the safety‐critical system it monitors. The sensor's costless observations of the binary state of the system become less informative over time. A costly full inspection may be conducted to perfectly discern the state of the system, after which the system is replaced if it is in the out‐of‐control state. In addition, a full inspection provides the opportunity to replace the sensor. We formulate the problem of adaptively scheduling full inspections and sensor replacements using a partially observable Markov decision process (POMDP) model. The objective is to minimize the total expected discounted costs associated with system operation, full inspection, system replacement, and sensor replacement. We show that the optimal policy has a threshold structure and demonstrate the value of coordinating system and sensor maintenance via numerical examples. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 399–417, 2017

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.