Abstract

Let $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T)$ be an ergodic measure-preserving system, let $A\in {\mathcal{B}}$ and let $\unicode[STIX]{x1D716}>0$. We study the largeness of sets of the form $$\begin{eqnarray}S=\{n\in \mathbb{N}:\unicode[STIX]{x1D707}(A\cap T^{-f_{1}(n)}A\cap T^{-f_{2}(n)}A\cap \cdots \cap T^{-f_{k}(n)}A)>\unicode[STIX]{x1D707}(A)^{k+1}-\unicode[STIX]{x1D716}\}\end{eqnarray}$$ for various families $\{f_{1},\ldots ,f_{k}\}$ of sequences $f_{i}:\mathbb{N}\rightarrow \mathbb{N}$. For $k\leq 3$ and $f_{i}(n)=if(n)$, we show that $S$ has positive density if $f(n)=q(p_{n})$, where $q\in \mathbb{Z}[x]$ satisfies $q(1)$ or $q(-1)=0$ and $p_{n}$ denotes the $n$th prime; or when $f$ is a certain Hardy field sequence. If $T^{q}$ is ergodic for some $q\in \mathbb{N}$, then, for all $r\in \mathbb{Z}$, $S$ is syndetic if $f(n)=qn+r$. For $f_{i}(n)=a_{i}n$, where $a_{i}$ are distinct integers, we show that $S$ can be empty for $k\geq 4$, and, for $k=3$, we found an interesting relation between the largeness of $S$ and the abundance of solutions to certain linear equations in sparse sets of integers. We also provide some partial results when the $f_{i}$ are distinct polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.