Abstract

Despite the environmental and economic benefits of Electric Vehicles (EVs), distribution network operators will need to understand the location where the charging infrastructure will be placed to ensure EV users’ needs are met. In this sense, this work proposes a methodology to define the optimal location of EV semi-fast charging stations (CS) at a neighborhood level, through a multi-objective approach. It applies a hierarchical clustering method to define CS service zones, considering both technical and mobility aspects. Besides, it considers uncertainties related to the EV load profile to determine the CS capacity, based on the user's charging behavior. A Pareto Frontier method is deployed to support the decision-making process on CS optimal location, considering utility and EV users’ preferences. The results indicate that the best CS locations for mid-term EV penetration can also fit into long-term planning, with higher EV charging demand. Thus, these locations would be good candidates for the power utility to make initial investments, regarding both planning horizons. A real distribution system case is used to demonstrate the applicability of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.