Abstract

In this paper, a new method for optimal locating multi-type FACTS devices in order to optimize multi-objective voltage stability problem is presented. The proposed methodology is based on a new variant of particle swarm optimization (PSO) specialized in multi-objective optimization problem known as non-dominated sorting particle swarm optimization (NSPSO). The crowding distance technique is used to maintain the Pareto front size at the chosen limit, without destroying its characteristics. To aid the decision maker choosing the best compromise solution from the Pareto front, the fuzzy-based mechanism is employed for this task. NSPSO is used to find the optimal location and setting of two types of FACTS namely: Thyristor controlled series compensator (TCSC) and static var compensator (SVC) that maximize static voltage stability margin (SVSM), reduce real power losses (RPL), and load voltage deviation (LVD). The optimization is carried out on two and three objective functions for various FACTS combinations considering. For ensure the robustness of the proposed method and gives a practical sense of our study, N − 1 contingency analysis and the stress of power system is considered in the optimization process. The thermal limits of lines and voltage limits of load buses are considered as the security constraints. The proposed method is validated on IEEE 30-bus and realistic Algerian 114-bus power system. The simulation results are compared with those obtained by particle swarm optimization (PSO) and non-dominated sorting genetic algorithms (NSGA-II). The comparisons show the effectiveness of the proposed NSPSO to solve the multi-objective optimization problem and capture Pareto optimal solutions with satisfactory diversity characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.