Abstract

Nonreflecting Boundary Conditions (NRBCs) are often used on artificial boundaries as a method for the numerical solution of wave problems in unbounded domains. Recently, a two-parameter hierarchy of optimal local NRBCs of increasing order has been developed for elliptic problems, including the problem of time-harmonic acoustic waves. The optimality is in the sense that the local NRBC best approximates the exact nonlocal Dirichlet-to-Neumann (DtN) boundary condition in the L2 norm for functions which can be Fourier-decomposed. The optimal NRBCs are combined with finite element discretization in the computational domain. Here this approach is extended to time-dependent acoustic waves. In doing this, the Semi-Discrete DtN approach is used as the starting point. Numerical examples involving propagating disturbances in two dimensions are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.