Abstract

A common method for numerically solving wave problems in unbounded domains is based on truncating the infinite domain via an artificial boundary B, thus defining a finite computational domain, and using a special non-reflecting boundary condition (NRBC) on B. Low-order local NRBCs have been constructed and practiced since the 1970s. Exact non-local NRBCs were introduced in the 1980s. Only recently high-order local NRBCs have been devised. These NRBCs, despite being of an arbitrarily high-order, do not involve high derivatives owing to the use of specially defined auxiliary variables. This paper reviews the latter approach, explains its advantages compared to previous approaches, and discusses the different schemes which have been proposed in this context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.