Abstract

A Deeply Embedded Ring Anchor (DERA) system has been developed as a cost-effective solution for mooring arrays of floating offshore wind turbines (FOWTs) to the seabed. The DERA boasts several key features, including its versatility in various soil types, compact size, compatibility with diverse mooring systems, multi-line potential, and robust performance even under unintentional loading conditions. While prior preliminary studies have provided valuable insights into how the DERA can enhance cost-effectiveness by offering a high load capacity, these studies have predominantly focused on optimizing anchor performance under translational horizontal and vertical loading. However, to design the DERA optimally, we must also consider its ability to handle inclined loading conditions in addition to lateral and axial loadings. Due to its shorter length compared to a conventional caisson, the DERA has less resistance to moments, making it more sensitive to horizontal load capacity and the optimal load attachment depth concerning load angle. For this reason, our study introduces an analytical approach to evaluate the effects of inclined loading on anchor performance, utilizing the previously validated upper bound plastic limit analysis (PLA) method. In investigating the optimal load attachment of the DERA, this paper conducts a parametric study to analyze how factors such as load attachment depth, anchor aspect ratio, and load inclination affect the DERA’s load capacity. Our findings indicate that PLA can serve as a valuable analytical tool for assessing the ultimate load capacity of the DERA, particularly under inclined loading conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.