Abstract
We investigate the synthesis of optimal liveness-enforcing control policies for Gadara nets, a special class of Petri nets that arises in the modeling of the execution of multithreaded computer programs for the purpose of deadlock avoidance. We consider maximal permissiveness as the notion of optimality. Deadlock-freeness of a multithreaded program corresponds to liveness of its Gadara net model. We present a new control synthesis algorithm for liveness enforcement of Gadara nets that need not be ordinary. The algorithm employs structural analysis of the net and synthesizes monitor places to prevent the formation of a special class of siphons, termed resource-induced deadly-marked siphons. The algorithm also accounts for uncontrollable transitions in the net in a minimally restrictive manner. The algorithm is generally an iterative process and converges in a finite number of iterations. It exploits a covering of the unsafe states that is updated at each iteration. The proposed algorithm is shown to be correct and maximally permissive with respect to the goal of liveness enforcement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.